Simulation - Exam Introduction to Particle Physics

21/05/2021

Consider a theory based on a **global** group $SU(2) \times U(1)$. The matter content is composed by two fermions $(\psi_L \sim \mathbf{2}_1 \text{ and } \chi_R \sim \mathbf{3}_{-1})$ and by a complex scalar $\phi \sim \mathbf{2}_2$.

- 1. Write the most general Lagrangian (considering only operators of dimensions smaller or equal to 4) invariant under all the symmetries of the theory (Lorentz and gauge invariance) [3 pts];
- 2. Compute the total cross section for the process $\psi \bar{\chi} \to \psi \bar{\chi}$ (pay attention: are the fermions massive in our theory? And the scalar?) [3pts]
- 3. Suppose now that the scalar ϕ acquires a non-vanishing vacuum expectation value v:
 - (a) What is the value of v when expressed in terms of the parameters of the scalar potential? [1 pt]
 - (b) What is the pattern of symmetry breaking? What is (if any) the generator of the unbroken subgroup? [1 pt]
 - (c) Do some fermions acquire a non-vanishing mass due to symmetry breaking? Justify your answer. [1 pt]
- 4. What are the charges under the unbroken group of the components of the fermion and scalar fields? [3 pts]