



































































































































RELATIVISTIC

QUANTUM MECHANICS
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I LORENTZ GROUP

Almost always h I C

Lorentz tr on a 4 vector

X H Mu xu
leaves interval invariant

x gm'T F 9

qq.fx.glnot form

µg y
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x2 x
2

I
xtgx xHTgnx g Nga

I
defines

RENTZ GROUP

SOG 3

analog of 00 11 for 01N
Utu rt for UN






































































































































3

Properties
1 det g Det Nga

t et a detg
det a I

2 In components

gap xdXP gµ Ma Npxdxp

gap gµ AmaNp
Take a o p

goo H gµNoNo No Nio

Hot I t.IM 5 I In p I






































































































































4

CLASSIFICATION OF LORENTZ TR

detail delta I

T.ie nEfasIfsaE

poof
TIME INVERSION TIME INVERS

Proper Lorentz group A can be closetoA
H

LIE GROUP

Sod 3






































































































































5

LIE ALGEBRA of SOG 3

Take A close to 1 Aap ftp.twdp

Impose Lorentz condition Nga g

gm 8 04 87 07gap

gµ twin twin
H

0

PROPERTIES OF Tv

1 Guv Gyu tentisymmetric
2 A real Atf Htt

WH I muttered






































































































































6

Explicit construction of

Most general purely red antisymmetric matrix

a ftWo2 Wiz 0 W23
w y o

one generator for each of the independent
6 parameters

LORENTZ GROUP HAS 6 GENERATORS






































































































































7

Write Gap 1 wµv MMxp2

V
antisymmetric to get 6 independent

objects

ii p g wi
fw

woo hi wow

tf yo ow

twinM T

WO3

mpat
MM 818ps Gapof

What
are these generators






































































































































f
Physically we know that the generators
should be 3 dim rotations

boosts

From non red QM Igeneratorsofrotations
O O O 0

i i t L

Jst e fog Io 8g

Most we know that on a h vector

V boost in the ith direction

V Vt Vi Vi VitVi Vo






































































































































9
we immediately see that we can write

vk.fota IK.lv
iii

I t.int p

Hel f

2 categories of generators
3 symmetric tf Ma Ma N 3

3 antisymmetric F 1423 M Mr
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9

STRUCTURE CONSTANTS OF 504,3

From direct computation

Ji Jie EitanJm antisymmetric
generators generate

Jk Km Ekinn kn
ROTATIONS

Ki km EimnJn

More useful way to write the algebra complexity

Ji Jiziki
Jit Jit EitanJmt algebra

f I firm
Jm

Suk sue

group
SVC2 SVG






































































































































to

any representation of SOG 3 can be

univocally determined assigning 2

semiinteger numbers that completely
determine SVG rep

Sina I F I the two semi integers
immediately give the

spin content of the

representation just

That sum
the

Mt M H Mt M l Mt M






































































































































H

5011,3

Otl

i
2 inequivalent dim 2

must be

representations the vector

atrelativisticlevel

weheve2independent

spinorrepresentations
mi

We know that the algebra Ji.IT EikmJm

is satisfied by F fize if if
Io TI F KI if LHspinor

o E F KI if RH spinor






































































































































12

HOW DO
WEY

MAK E
GNzTACT

WITH

VECTORS

How do we translate a representation mum

to something 4 dim to make contact with

everything we know

Connectionthrough2x2unimodulargroup
SLK

Borut

Let's show that M E SL 2,1C

to correspond NM E 501431

and correspondence preserves multiplication

MN MCMINN A CMN






































































































































B

Correspondence is two to one

to both M M corresponds

thesame NM

Take

X any 2 2 Hermitian matrix

we know can be decomposed as

X Xo Atx F Hope
where ope A F

M arbitrary 2 2 unimodular matrix

detM L

then X MXMt again hermitian
musthave the form X x'Mrµ






































































































































14

Now detX det X

f
HOY IZ 1 01

2

I 2

hence X MXMt is a tr that leaves
the norm of X invariant
4

it's a Lorentz tr

Explicitly

X Mx Mt X'Mope AMa Hope

f
MraMt Anoop






































































































































15

We have found

A I M acting on a 2 dim space

I
thisrepresentationmustbethespimial

How do we make contact with what we saw before

In other words is this ft o or o t

Remember ft o I I Fe F
fo JI J KI i 5

with

F if IE IE






































































































































16

explicit LH RH transformations read

2ft II tfa ip F Y
Itt tips 514k

What about the M transformation

Since det M l the demerits of
Lie group SLR E are

continuously connected with It

I
M ft

tant ibn ar ti b z

Ga t iba l g ibn
in

imposing det6 parameters
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M I antiba og t antib r ft
w

I antibi B fartzae ti butter

large i bizzle i ra

A 2lb ion Js tf bathe i MEIJI

219 92 i bribe I






































































































































If
we can always identify

biztba 921 912,2by

a iz t da b r b21,29

Then

M A tip J
H

M can be identified with ft o






































































































































19
We defineLH spinor Xa Air to transform as

X
A MA

B AB

Now at the level of 4 vectors we have

invariance of scalar product

9pmHIV

Howdoesthistranslate spinors






































































































































Zo

y
metrictensor in spinor space

A B
EAB X 5 invariant

I
CAB MAC MB XCGD

must be Eco by the determinant identity
Ma Ma Man Ep pµ

detM Ea an

we now that EAB must
be the antisymmetric

symbol in 2 dim

EaE is fo f
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Invariance condition in matrix form

MT E M E

f take CE real

HE E

I can construct anther invariant
ITE 5 where 5 M 5

To distinguish from we introduce new indices
in

A Mt A B
DOTTIE






































































































































22

can we connect identify 5 with a

RH spinor

YES explicit amputation gives

E H Iti B F E M

14 Remembering EE A

4k H tht its 5 Yr
E M E

H
E 4k M E 4k If
w w
E 5






































































































































23
thus we find two independent spinors

XA MABXB

a A Mta QB
Vandmefagwangerden

B

with






































































































































24

This finally allows us to connect

Hitz x

From X M XMt

4
Xane MAB Mta B XBB

But X artof ope naturally carries

one undotted

one dotted index

14
it transforms in the

ft't






































































































































25

We can also use E to raise lower indices

because it is the metric tensor in spinor

space

XA XA E
AB
12,3

C.fi
EABGe Biz H F Fu

we can also ask ourselves what happens with

higher dim representations

Example H o

triplet of
unedited symmetric
indices

X
AB






































































































































26

To find the corresponding tensor we try to
find combinations of ope and or Fp which

is symmetric in AB

Result only one possibility

OM
AB II Hae F

ED
Tac Fri

D
Epps

1
antisymmetric in pv

I o X AB Apr
antisymmetric



PoiNCAREfRo
27

Poincare Lorentz t space time translations

xx NpXB ad

Notation Poincare tr denoted with

all

combination

x a a n'laxtal a
II

N N X t da ta

a a ofa A data AA
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Inverse Ca A olga 0,1

data AM

I
A N a A'a A a

OVANTUM MECHANICS

We seek for unitary operator

Ila a U a Htw

Ht wµvFMtiquP

j
n

Lorentz group
translations

4
generator 4 momentum



29

liealgebra7
tt compute UlaMIMAta N

Ula A Ft A Ca n
2 take Ca A infinitesimal compute algebra

STEP 1

IlaMUTE It Unta N

Ite MAE Itu Ata a a

Ila A If Itu A'ate Itu A J
n

H

U f A Itu A a AE ta N Ith A

I fol not at de Ha I ADN

Il



30

x Iti It AWAYWIN
i AE A wit a

µ
PM

On the other hand

U a A ICE It b G la A

Illa A It izWen IntiGupte VT YoA

I ZI win NaA ING ad
iGu Ica A PHAYaN

need to compare the wµ Ep terms



31

Opening up first expression found

µ f y 43 µ a
It gµv AawµApJtiAaEµP

in'wla'T a'Pmsymmetric a µv e

t zwpv naMNTPFB 2a.MNYaepd

iEµ ha

remaining.IT iarr.niu

1 zIwpev AarApVJdP 2AarApvaPP

tier rpg Iq
of wpm



It wµv A Ap FM appataapp
32

I
must be UlaMIMI la d

tiga aanRn

Mhpmust be U MUYaA

STEIL
Take how AKI A Ith

Weneed U la Ith't If Itu'T a Itai

tuffs wya H w'D
tutor t w't
11 whim ignite
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Then

Ila a ING la N
H

ft ENT t i CaB FMft iz wtf i lait
H

Int 5 IN JMwifftifa III Yog
H

I Nti wap IM IM ti ap PP IN
11 according to previous computation

pg 32

AaMApi F t of FP a13pm

H

dattwht dp't wp
v JTFatFP APFY

l



IM an
Heaven

war jawpuff

I t w JagPr JMsg
a gate F gimpy

µ use antisymmetry of whp

IN wipe ImgMut IMBgov FMgMjMgP

an gm F govFM



35
comparing the two results

i I93 FM GPMJMgavftp.gdrg PV

g
Br Ina

i pm JM gdr F govpH

We can now repeat with Illa Itw't Fa Ita Hwy

Ica Itw't UnYa Hai Aµ
a ft

t
f It Cw B tiCapt Fd I iz WI i ca B Ftw 45

t

FEI w µ M Rd i gu Dr Phd Pdtwing F

l



µ 36

Phizwin JIM ti ape TRY P't wz'µv g FtgMp

f
i FM Rd guFM GMP Ias before

ftp.t
oy

fundamental result
the components of the 4 momentum

operator form a compatible

set of operators
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IWIGNERISCLASSIFICATION
2

Idea

PARTICLE IRREDUCIBLE REPRESENTATION

POINCARE GROUP

How do we achieve the classification

Inspiration from SOG Suez we identify
as many g as possible

t
operators that commute with all
the elements of the algebra



38
Poincare algebra pgs 35836

CLAIM Ifirst Casimiriff
Proof

a Call CAM ftp.prf jdppkptj43

Then

ftp.PJ Jdpprpp pptjaplcaprtprjdpfhdppr
Capp

I

Canupp prejappf pagappf

PIcapT
I

ifgrppt.gl 1513JPY
i Ppi g pkgMBB
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ly i P ftp.FYF.PH
O

b Fa F pa ftp.puprpaw
they commuteIprpapa pippa

u

f Fpd Fpd 0

Now from Fd FB O complete set
of observables

ftp.D ptyp D
any other quantum n
needed to completely
describethe state



Action of 1st Casimir
40

Elp o ftp.D M p
o7kweusethemasstochessifyapartide



41
Lorentz transformation on States

what happens applying 216 a AA
on IpD

F U'a Ip attain hyp U'aftp.o
from pg 32

IN PHI ath pm

a car
I MIPHAM Ift'tPhi

IN Pd
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Then

PT Aa Ip D Ma IH FdIp D
Iatap IN 1pm
I cap r I A Ip D

I A Ip o has momentum hp

we
write

it as a general combination

of kets Hp o where o allowed

to be different from o

TIN Ip D CooCa p lap o

We still do not know what o is



43
We now use a trick dueto Wigner

there are frames in which pH is particularly

simple

a aside to ft
rest frame

b masslesspotides po LIE

Any pH can be obtained from po via a

Lorentz transformation

p Lppo



44
Now Define quantum h o as

be left invariant by Lp

Ip o Nap Kp poi
1

normalization

To classify o f understand what it is we

use another trick due to Wigner since s

is defined in the frame in which momentum p
we look at the Lorentz transformations that
leave us in this frame but modify 5

Leaving framethe same i 4 Po Po

elementof LITTLE GROUP
of Po



By definition the only effect of M is
45

to modify o that thus transform in an

irreducible representation of the Little group

UT M Ipo 07 2,2Doo M Ipo o

representation little group
4

we need to study what the
little group is to understand

what o is



46
How do we connect this with what we
saw before

Fundamental observation

A p Lap Po

t
A Lp to Lap Po
4

Lj A Lp Po Po

M element little group
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But then

I N lp r NpUnH Un Lp Ipo r

t Np Un Alp Ipo D
t Np Tt LapM por

t Np I Lap ANDIpo07
t Np I 1Lap E Doo M l p o 7

I Np Doo M V Lap Ipo ot

hp o

l Hap

Anf Dog M l dp o

pg 42 Cooca p Idp o 7



48

tnsthattheirreowabergresmtet.ms
of thePoincare group Cosa are completely

determined in terms of representations of

thetittlegroupct
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Looking at the little group we also find the
second Casimir

Mpo po 8th twtr pi pot
I

WµvpoV O

k

f WapMB µpV o

with MM pedfedE
d9dBpwapgdf

Eid3Dpov.o

t
wµvpoV o

parameters b solution garbitrary

wµv EµvappodhB
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At quantum level

M eiwMFMEIGuvappodhB.FM

eihBWp

where Wp tzEµ pod IN
PAULI LUBANSKI Vector

Important results

A Wa FB O

2 WZ
is the SECOND Casimir of the

Poincare group
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IMASSIVEPARTICLESIMO
can choose po Img restframe

Little Group Mpo p
I

A footufftion

Little group SOB

Pauli Lubenski vector

Wa I EpvpapoBJM mzfuvp.SK FM

Guvon

t
µ ya must be spatial

indices



Wk My Eijo Iii
52

C
purely spatial must select

angular momentum
operators

I1 in restframe we
obtain

spinopse

M Sk

Casimir If me

we need mass to spin to classify

particles as in NROM
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MASSLESS PARTICLES

m o no rest frame but we can pick up

FEI
Little

group write Midtitiati

Imposing Mpo p we get a

FA
iv wait

I

wz til
1B

Ws til
I



54
we obtain Is two more generators

This group is called Euclidean
group in 2dim

n r n

A B O Is A i B

B B f in

A B compatible and rotations around

transform one into the other

What are the quantum numbers of a massless particle
under A B
Take lab such that A la D a lab

Bla b b la b



55
Now under a rotation we have

UTOIAI YAfttio I.EE AfI iOI EIY
A ioEss.AI

045A EIA IAI
Te

Aa OB use cormemantins

EEAEI iIB.BA
TIBI

IA
OB if By

A OB EA t

I cost A sinOB



Also 56

I BTito A sin0 t B as0

Thus for arbitrary 0 we can define

la Do It 01 la b

A la De a cost bsinOlla Do

B la Do Casino boost la Do

Thus if F a fo or b O we have

a continuum of States
we should observe in nature an additional

continuous queutumnumberthatishot
observed Ineedtoadmitaabt



57
When a o b only is left
States transform under little group SO

Since this 5012 is a subgroup of the
5013 contained in sod 3 its eigenvalues
are quantized

4
Is has eigenvalues LI Ke 2
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Pauli Labanski using the definition

a L Guysa pop IN
Eepa pop I

3

I f E
I

Ee
l

But we can also write po FEE

w f EJ I

we are finding thatthe
little group selects as

useful quantum number

the projection of the angular
momentum alongPo



ng
59

Putting everything together

PE 0 Polito VIO

necessarily WE h pod
t t i

W
h

HELICITY

Since 915131 0 compatible observables

label the states as h

with
Hah polyph

WH Ipoh hpd Ipo h



NORMALIZATIONOFSIATES

What is the factor Np appearing in

Ipo Np U'Kp Ipo o

Impose

Gok't p D doo Bff F
IN Np spirytttkpilUkpllpor

I
choose

Npf doo 8411 Fo



Connection between 8345 F 84ps pot

A Lorentz invariant integration is given by

Jdp off MY Alpo fdspfdpodfpo2f.MY

t.SE h r
Thus if FCF is an invariant function
we obtain

F fd3p 8415 F Ffp

tfd
q
ftp.MTdyp FD FEI

infant Et invariant



podYF FY invariant p Efp pi

Putting all together

doo 84ps F INpl doo ftp.poy

pdor'fo8CFI

fNp fI
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EXAMPLE CLASsiCALEMFiE

We have developed our formalism applied to quantum

States but most of the concepts can be applied
in the same way to classical physics

In particular it is always true that

Ap A Lppo LoftLp Po pow
Lap

Me little group

Ap Lap Mpo

orig Lorentz tr can always be written

starting from the little group
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In the frame of po Ee the EM potential

can be written as

A E Et t e i with E t f

Po Po Po z

5
EM field is transverse

The little group transformation is

M exp Io Ei fo's
W W2I complicated expression

Applied on Epf we get

MEET EiW'ftp.tftfwi we Po



2 d 62

I the helicity is I I

µ
physical photon contains both Eottu

It
contains h I

2 The part of M associated with w wz

A B generators cause Epf to

shiftbyaquentityproportionettopo

But then defining Eft LpEpf we get

AEpt A LpEpt Lnp MEpt

1 Lap e
iw3

ftp.tfpo
I Eti w3 Efp f Ap



This will be fundamental in the
quantization of the EM field

Messages although we write them as

4 vectors the polarization

vectors of the EM field
dohot transform as

4 Vectors under a Lorentz

transformation Theshift
proportionaltothnomentum
will be the gauge transform
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IRELATIVISTICWAVEEQUATIONSI

Now we use Wigner's classification

For a particle with moss in and spins
we will combine representations of the
Lorentz group that contain the chosen spin

How Since we seek for wave equations
we will allow

1 for the operator pµ if Ift to appear
2 we'll demand Lorentz covariance ie

the wave egs look the same in all
inertial frames
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ISPIN OPARTI.CL

We have seen that s o is contained in

Co o ofEl

a ol

Only avariants that can be formed are

prolae m ol

prep mom

the two constants can always
be taken equal by a wave

function redefinition

Buffalo m pilot
I met
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pm m2 4 0 KLEIN GORDON

EI

Since pre it Dtm 4 0

Once 4Gt is known we can compute

01 1 using Ion imply
01M IS NOT AN INDEPENDENT FIELD

SOLUTIONSOFKGEQUATIONI

Since KG wave equation plane waves

complete setof
solutions

e
k
of e

i Ikot EI

RE
do

convenient normalization
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Inserting in KG K2 m2 fo o

H
K m2 ok Relativistic

dispersion

relation

But this imply

KE I MKT I E

we have both Koso Ko
solutions

Most general solution of KG equation

lo fgffpzt oitpeift FH.la e ifEtpxg

ffIfpz a e im affeipig
changep s p



Also computing 2 with probability 67

P fd3x to f
we discover that Pto

Conclusioniwarefunctioninterpretationot
doeshotmokemuchsensey



GfSPIN 1 2 PARTICLE I

We have seen that 5 112 is contained in

ft o ga

Ost A is

How can the momentum operator pp appear
contract spinarialindia
We use Foia pMon aia

relation with 542,6



We also raise the indices using E i
69

foia Edb E ab pbb
1 pie Ei E barons

Eµjaa I F

Covariant wave eg

Faia Ioi _m Ba poi 5 m Ioi

Using one in the other

b
Faa poi Eb m 5

t
Faiaprob Bb m2 Ea



70
Use how

part Monaa p 7
pie priors f Eiji
Faa fab FET fp'T

2 dab

I pz fab
pm m2 5 0

mg ottIethfaino snists



71
For Mto both Iai Tsa are necessary

to write down a covariant equation
massive elk particles contain both

LH RH spinors

Leaving implicit the indices we can write

i of2M I ME
DIRAC EQUATION

i of2M m E Cin way form

Equivalent and more compact way to present
the same physics

4 Ef Dirac spinor

Cor 4 spinor

by construction in the ft o at



72
In terms of 4

t.ITmIIxo
i2rIEfTf mf4 o

H Feynman slash hotation

th qua al

i 21 m 4 0 DIRACEQUATIONL

y
1storder equation

Gu define a con

f 1447
Prob density



XERTESOFTHEJMATR.ES 73

A 848 2gN CLIFFORD ALGEBRA

2 µ o v 892 1

3 µ i v 8iY I

4 Hamiltonian form Dirac eq
i H2p m 4 0

i 82T it I m 4 0

i 82.4 fit Itm t

i 2 4 8 8 Itm 4

in Itm 8 4
FFF historical

notation

IN



5 Using 80180 pt p7488
8 8

ftp.lgfromomdifhoion

If It as we want

OBS atl matrices satisfying 8983 2gm
t

got p 888 8 are called

f matrices The expression F fffooth
is just one of the possibilities



SOLUTONSOFDIRACEQUATION
75

Repeating what hes been done for the KG eg pg
66

INTRODUCE PLANE WAVES OF POSITIVE NEGATIVE

ENERGY

Hpt up EiP HI zvpeiP

Most general solution

H fdz p 45 48

Applying id m to 4ft 4 p

k m up O Htm Vp 0

L
solutions



Write up f ip ffg
76

H
E otp I mx E F f B mp
Eto f a MI Et F F p ME

Non relativistic limit Earn

I CE E F x M
T a

at Ocp

a

B top p
Tm F Pt Ocp

p

only 1 Weyl spinor needed to describe a

NR spinor as was done in NRQM



77
Focus on positive energy sector

for the negative energy we just need to do
m m

To make the NR limit easy define

a T X I d

1
a

large component
shell

component

tends to vanish in NRlimit

we obtain

E m lo FF 12 0

mix spot ftp.t.IT l9I EfH

Ainthisbasis



7 f

Remembering A 88ps 8M

I

t.fi aIit f I

in this basis

Finding 4812
1 write 7 1151 sin fast sinosint ASO

t.pe p faosOsinOei9sin0ei9
cosO

Z Eigenstates of FP

is items



79
3 Seek for solutions

H
acting
to this the A operator is

Effilth ftp.E.t ECFEd
4 Solutions are

1 HEIEEE.li tfEEEs.I



NON RELAM.ws MiToFDiRAcEq 80

Since we want to obtain a systematic to expansion

we reinstate the

basis convenientforNRlimit

Dirac eg it 3 frost 8mi H

where 4 194

I

i

NR limit Ee me En Infect



81
ME dominant contribution to E

8
factor it out in time evolution

in NR energy computed on top ofme

8
4 4 eimet

In terms of 4 we get

it 371 Ic88F 8me me 4

and we call 4



it 2 c o.fm
82

Kita
HEFEI

We can now expend order by order in

A kept ft
X e F.ph

2mc

If
it 3 eEmEI EIol

we obtain the right Schrodinger

eg for ol



83

Probability density

f lolKil X't e llo ft OG
4

exactly whet expected from

Schrodinger eg

2 unto E
Start with prob density we keep HP

g 1442 ftp.lo.toY2

I
not in Schrodinger form



84
But to write the Schrodinger eg
corresponding to the NR limit of
Dirac eg we need a Spiner Olson

such that

folk 14gal fd3x ITolHythe II 544
2

k
Integrate by parts symm way

Jdk 2if't g Ed D I folk lo't risk22kt
Jdk 22k tired

sine Sinti folkfol'tTTY tFol'tlol



85Thus

fdsxtfsaffdk lolf ghz.tt ol
gtmIeT74itoJtfd3xlo

III If 10k
we obtain

sa HEE lol

We also need to consider terms of 01 in

the Dirac eg
e take ol X stationery

Eq for X
with energy E

xt o.es
2MC

f
Ne l Ee t.FI

Zinc



86

Eq for ol Epl CF X

Ef Fha tsar EE t Ee E q
t Ematosa

Et III Hsa Eat Eek III Hsa
t.EC

faeHsazmEczEmtsch

oefa

4k 44sayEmf Fattah

Efsa Ea ft

look



87
E dah FEM the loan 9

8
EXACTLYTHENREXPANS.io

oFTHEINETCENERGY



8ftNR Dirac equation in EM field

Taking the NR limit of theDirac ag
in an EM background we'll obtain the
relativistic corrections that must be applied
eg to atoms FINESTRUCTUREL

EM background E E E eet

E E E EF
Take again 41 x stationery states

Diracq.frbecomes
XkzmtCt zmEe oE



Keeping terms up to O
89

Emet HE EATol

Interpol
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Inserting in the probability density we get

f lol't'tftp.lttol'T as before

the term with A

g
contributes off

still true that
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Eq for lol becomes
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functions



Computation various terms
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Iff EAM EI BEL
F E E Foiol already multiplied by

see pg 90 keep E
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fo g pi E e E pilot

I is ti Eijkoi Eiht
2i E e E 9ol
afts

on everything on its right
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Back to pg 90
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Hamiltonian applied on Kate
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II she EE HEE EF8m2cm
I

need to properly open
the derivatives
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Puttingalltagetheri
A In eat III EEEB
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gE correction kinetic energy

qImc FB magnetic dipoleterm

F Enter ethos



Emei Eaf F spin orbit
interaction
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case
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emt E Darwin term
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DRAWBACKS OF THE

DIRAC EQUATION

Summary of wave egs

Relativistic f 1412
conserved

Negative
energies

S XVX

Dirac V V V



Dirac we have a relativistic
tot

wave equation which has

a conserved probability density

consequence of being a diff eg
1storder in lime but the

price to pay are States with

negative energies

fphysically
a disaster

E 70

I use photon emission States with

Eso Eso aan

decoy in

States with

ELO
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Diradsproposat

b
Diracseia ALL STATES WITH ELO

ARE FILLED UP AND
OBEY PAULI PRINCIPLE
States with E 0

aEnergy annot decay

HEDirac sea
filled J

N
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Takeaways
1 thereshouldbeaspinstalisticonnection

fermions obey Pauli principle satisfy

Dirac eg 5 112

2
Diraceg.doeshotmakesenseast

singepuh.cl physics
is forcing us to introduce the Dirac
sea to make the eq feasible

4
WE NEED A RELATIVISTC
MANY PARTICLE THEORY

µ
WILL BE QUANTUM FIELD

THEIR


