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1 Preliminaries

We list here some exercises that the student should be able to solve after any
basic course on Quantum mechanics.

∗ ∗ ∗

1.1. Consider the time evolution operator

|α(t)〉 = Û(t, t′) |α(t′)〉 .

(a) Derive the differential equation obeyed by Û(t, t′);

(b) Derive an integral equation for Û(t, t′) equivalent to the previous
differential equation.

1.2. Show that the Schrödinger and Heisenberg pictures give the same mean
value for any observable Ô.

1.3. Show that the Equations of Motion for and operator ÂH(t) in the
Heisenberg picture is

i~
dÂH(t)

dt
=
[
ÂH(t), Ĥ

]
.

1.4. Verify explicitly that the differential equation

P (∂x)φ(x) = j(x) ,

where P (∂x) is some polynomial of partial derivatives, admits the so-
lution

φ(x) = φ0(x) +

∫
d3y G(x− y)j(y) ,

where G(x− y) is the Green’s function, defined by

P (∂x)G(x− y) = δ(3)(x− y) .

1.5. Show that the propagator K(xa, ta|xb, tb) ≡ K(a|b) is the Green’s func-
tion of the Schrödinger equation. It can be useful to first show that

〈x′| P̂ |x〉 = −i~∇δ(3)(x− x′) ,

and that

〈x′| Ĥ |x〉 =

[
(−i~)2

2m
∇2 + V (x)

]
δ(3)(x− x′) .
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2 Symmetries

2.1. (a) Show that for antiunitary operators we must have (α ∈ Ĉ)

|Û(αψ)〉 = α∗ |Ûψ〉 .

(b) Show that if Û1 and Û2 are symmetries then so is Û = Û1Û2.

(c) Show that if Û is a symmetry then so is Û−1.

2.2. Show that the operator identity

lim
N→∞

(
1 +

iθ

N
T̂

)N
= eiθT̂

is true for a selfadjoint operator (hint: since T̂ admits a complete set
of eigenvectors, one can write...).

2.3. Show that a similarity transformation Â→ Û †ÂÛ does not change the
eigenvalues of Â.

2.4. Consider the translation operator

Û(a) = e−ia·
~̂
P/~ .

Show that [P̂i, P̂j] = 0 is equivalent to

Û(b)Û(a) = Û(a)Û(b) .

2.5. (a) Write a rotation as R ' 1+ω. What is the condition that ω must
satisfy for R to be an orthogonal matrix?

(b) Write explicitly the ω matrix for the SO(3) group and, by gener-
alization, write the ω matrix for the SO(4) group;

(c) How many parameters does ω contain?

(d) Writing now

Û(1 + ω) = 1− i

2
ωkmĴkm



Advanced Quantum Mechanics 4

(why the factor 1/2?), and using the property of vector observables

Û †(1 + ω) V̂i Û(1 + ω) = RijV̂j ,

show that

i
[
V̂k, Ĵij

]
= δikV̂j − δkjV̂i .

(e) Consider now two different rotations R and R′. Using

Û †(R′)Û(1 + ω)Û(R′) = U [R′†(1 + ω)R′] ,

and expanding the expression up to first order in ω, show that Ĵij
is a tensor operator;

(f) Writing now R′ = 1 + ω′, compute[
Ĵij, Ĵkm

]
i

=?

(g) Show that in the R3 case we obtain the correct SO(3) algebra with
the identification

ĴK ≡
1

2
εijkĴij .

2.6. (a) Given a vector Vi, i = 1, . . . , n, we define n gamma matrices such
that

V̂ = Viγi .

Requiring now V̂ 2 = (ViVi)1, what is the condition that the γ
matrices must satisfy? This condition defines a Clifford algebra;

(b) Assuming that a rotation can be described by

V̂ → Ω†V̂ Ω ,

is the condition V̂ 2 = (ViVi)1 still true? This transformation
defines the spinorial representation of SO(N);
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(c) Writing now

Ω = 1 +
i

2
ωik Ĵ

S
ik ,

(where ĴSik is the generator of the spinorial representation), show
that if we identify

ĴSik =
i

4
[γi, γk] ,

we obtain the correct SO(N) algebra;

(d) Show that in the SO(3) case we have

ĴSi =
σi
2

;

(e) Using tensor products between σ and 1, construct the γ matrices
in the SO(4) case.

2.7. Show that even (odd) wave functions are even (odd) parity eigenstates;

2.8. Consider a particle subject to the potential V = V0 sin (2πx/a):

(a) What are the symmetries of the Hamiltonian Ĥ?

(b) Is momentum conserved?
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3 Identical particles and second quantization

3.1. Verify explicitly that the operators

Ŝ ≡ 1 + P̂12

2
, Â ≡ 1− P̂12

2
,

(where P̂12 is the permutation operator) are projectors.

3.2. Prove that, given any operator Ô acting on H = H1 ⊗H2,

ŜÔŜ =
ŜÔ + ÔŜ

2
.

3.3. Consider a 3 particles state |λ1λ2λ3〉, where λi denote a generic set of
quantum numbers:

(a) what are the symmetrizer/antisymmetrizer in this case?

(b) write down the completely symmetric state.

3.4. Consider a system of two spin 1/2 particles. In each of the single
particle Hilbert space we can define a basis according to

|+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
.

(a) What is the dimension of the tensor space H1 ⊗H2?

(b) Construct explicitly in this space the basis |++〉 ≡ |+〉1 ⊗ |+〉2,
|−−〉, |+−〉 and |−+〉;

(c) Construct the permutation operator P̂12;

(d) Construct explicitly the symmetrizer Ŝ and the antisymmetrizer
Â in this space;

(e) Verify that the operators Ŝ and Â computed above are projectors.

3.5. Repeat Exercise 4 above for the case of a system of three spin 1/2
particles (suggestion: use Wolfram Mathematica to speed up the com-
putations). Show in particular that, unlike what happens with two
particles, we now have

1 6= Ŝ + Â .
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3.6. Two identical electrons have momenta p1 and p2, respectively. Write
down the state of the system if the total spin is 0.

3.7. Consider a pair of electrons constrained to move in one dimension, in
a total spin S = 1 state. The electrons interact through the potential

V (x1, x2) =

{
0 |x1 − x2| > a,
−V0 |x1 − x2| ≤ a.

Find the lowest energy solution with vanishing total momentum. (Hint:
it is useful to go to the center of mass frame.)

3.8. The path integral treatment of identical particles show that the relevant
basis in position space is

|x1x2〉S,A ≡
|x1x2〉 ± |x2x1〉√

2
.

Show explicitly that for |ψ〉 = |ψ1ψ2〉 one obtains automatically sym-
metric/antisymmetric wave functions for the system.

3.9. Suppose we consider the diatomic molecule composed by two 56Fe
atoms (which has s = 0). What is the state of the system? Repeat the
same analysis in the case in which the molecule is composed by two
55Fe atoms (with s = 3/2).

3.10. Solve the eigenvalue problem for the Helium atom using perturbation
theory (with perturbation Ĥ1 = 1/(4πε0r12)) and compare the result
with what is obtained using the variational method.

3.11. Show explicitly that using second quantization techniques, we get

〈p1p2|p3p4〉 = δ(3)(p1 − p3)δ(3)(p2 − p4)± δ(3)(p1 − p4)δ(3)(p2 − p3) .

3.12. Consider a complete set of eigenvectors {|λi〉}. What is the second
quantization representation in this basis of a single-particle operator
Ô1 and of a two-particle operator Ô2?

3.13. Using the results of the previous exercise, write down the second quan-
tization representation of the spin operator Ŝ = σ/2.
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3.14. Consider a generic Hamiltonian

Ĥ =
p̂

2m
+ V (r̂) .

(a) write down the momentum representation (in terms of the opera-
tors a(p) and a†(p));

(b) write down the position representation (in terms of the field op-
erators ψ̂(x) and ψ̂†(x)).

3.15. How can the Coulomb potential be written in terms of the field opera-
tors ψ̂(x) and ψ̂†(x)?
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4 State operator and quantum statistical me-

chanics

4.1. Prove the following properties of the state operator:

(a) ρ̂ is hermitian;

(b) tr(ρ̂) = 1;

(c) if ρ̂2 = ρ̂ then the state is pure (i.e. there is only one state,
appearing with probability 1);

(d) ρ̂ is positive: 〈φ| ρ̂ |φ〉 ≥ 0 ∀φ;

4.2. Consider light with circular polarization (it can be either left or right
polarization):

(a) Write the expression of the classical electric field;

(b) Translate the previous result in terms of a density state for circular
polarization;

(c) Consider now a polarimeter with axis along the (cos ξ, sin ξ) direc-
tion. What is the probability of measuring light with polarization
along this direction after the light passes through the polarimeter?

(d) What changes in the previous point if the initial beam is composed
by 70% left polarized light (and 30% right polarized light)?

4.3. The ammonia molecule NH3 is a typical quantum two level system,
in which the N atom can be above the plane identified by the three
H atoms (state |↑〉) or below the plane (state |↓〉). The Hamiltonian
describing the NH3 molecule is

Ĥ =

(
E0 −A
−A E0

)
.

(a) Suppose we prepare an initial ammonia state |↑〉. What is the
density matrix associated with this state?

(b) Compute the time evolution of the density matrix of the previous
item.
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4.4. Consider the number density of particles ρ(x) =
∑N

i=1 δ
(3)(x − xi),

describing N particles at positions {xi}. Express the quantum opera-
tor corresponding to the number density in terms of field operators in
second quantization.

4.5. How to count states of a free particle? In principle the momentum of
plane waves is a continuous variable, i.e. there is no notion of counting.
It will however prove useful in various situations to define a density of
states in order to count how many states have momentum around a
certain fixed value. In order to count these states, we put our system
in a large cubic box of size L imposing periodic boundary conditions.

(a) What is the condition that the momentum must satisfy once pe-
riodic boundary conditions are imposed?

(b) How many states to we have in a volume ∆px∆py∆pz in momen-
tum space if the particle is a boson? And if it is a fermion?

(c) How many fermions to fill up completely the lowest energy cell
(starting with p = 0)? What is the total energy of the system?

4.6. A system of N conductivity electrons in a metal can be considered as
almost free. Using the results of the previous exercise, compute:

(a) The radius of the sphere in momentum space that contains exactly
N electrons (it is an excellent approximation to consider L suffi-
ciently large to use integrals to sum over states). This momentum
is called the Fermi momentum and is usually denoted by pF ;

(b) The energy EF corresponding to the Fermi momentum;

(c) The energy density g(E), defined as

N =

∫ EF

0

dE g(E) .
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5 Relativistic quantum mechanics

5.1. A convenient choice of units to work with in the context of relativistic
quantum mechanics (and quantum field theory) is the one of natural
units, i.e. ~ = 1 = c.

(a) Show that in these units [L] = [E]−1;

(b) What is the relation between time and energy units? Show explic-
itly that the result is compatible with the Schrödinger equation.

5.2. Consider a Poincaré transformation written as

U(ε, 1 + ω) ' 1 +
i

2
ωµν Ĵ

µν + iεµP̂
µ ,

where ε and ω are infinitesimal parameters:

(a) Compute U(a,Λ)U(ε,1+ ω)U−1(a,Λ);

(b) Using the previous result, compute

U(a,Λ) Ĵµν U−1(a,Λ)

U(a,Λ) P̂α U−1(a,Λ)

5.3. Use the previous result (specialized for infinitesimal aµ and Λµ
ν) to

deduce the Lie algebra of the Poincaré group.

5.4. Consider the (1/2, 0) and (0, 1/2) representations of the Lorentz group:

(a) show that for these representations we have(
1

2
, 0

)
→ J =

σ

2
, K = i

σ

2
,(

0,
1

2

)
→ J =

σ

2
, K = −iσ

2
.

(b) call now ψL a spinor transforming in the (1/2, 0) representation
and ψR a spinor transforming in the (0, 1/2) representation. Com-
pute explicitly the form of the Lorentz transform spinors in the
two cases. For simplicity, specialize to the case of infinitesimal
parameters;
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(c) compute the transformation properties for the hermitian conju-
gate spinors ψ†L,R;

(d) is the combination ψ†LψL Lorentz invariant? What about ψ†LψR?

(e) show that (ψ†RψR, ψ
†
RσψR) transforms like a 4-vector;

(f) show that (ψ†RψR,−ψ
†
RσψR) transforms like a 4-vector;

(g) is the combination ψ†R∂tψR + ψ†Rσ ·∇ψR Lorentz invariant?

(h) what about the combination ψ†L∂tψL + ψ†Lσ ·∇ψL?

5.5. In the classical field theory of the Schrödinger equation, the Lagrangian
density is

L = φ†
(
i~∂t +

~2∇2

2m

)
φ ,

where φ is the classical Schrödinger field.

(a) Show that the Lagrangian density can be made hermitian adding
only surface terms (i.e. total divergencies);

(b) Compute the classical Poisson brackets between the field φ and
its conjugate momentum;

(c) Show that the Hamiltonian computed as Laplace transform in
classical Schrödinger field theory is consistent with the Hamilto-
nian operator obtained in second quantization (consider for sim-
plicity only the free particle case).

5.6. The Dirac equation in natural units is (iγµ∂µ − m)ψ = 0. Write the
Dirac equation reinstating the c and ~ factors.

5.7. Using the Lie algebra of the Poincaré group, show that once we identify
the µ = 0 component of the 4-momentum operator Pµ with the Hamil-
tonian, H = P

0 we have conservation of linear and angular momentum.

5.8. Considering the classification of the Poincaré algebra in terms of SU(2)×
SU(2) quantum number, what is the smallest representation that con-
tains a spin 2 particle?

5.9. Show that
∫
d3xψ†(x)ψ(x) is not a conserved quantity if a wave func-

tion satisfies the Klein-Goerdon equation.
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5.10. Verify that
∫
d3x

(
iψ†(x)ψ̇(x)− iψ̇†(x)ψ(x)

)
is a conserved quantity

in the Klein-Gordon theory.
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6 Scattering

6.1. The flux of initial particles in a 2 particle scattering is given by

ΦIN =
vIN
L3

,

where L3 is the total volume considered and vIN the relative velocity.
Give an expression for vIN for non relativistic and relativistic scattering.

6.2. Consider the Möller operator for a time independent Hamiltonian,

Ω̂(t) ≡ eiĤt/~e−iĤ0t/~ .

Can we write it as

Ω̂(t) = eiV̂ t/~ ?

6.3. Show the following results in interaction picture:

(a) differential equation for the time evolution operator: i~∂tÛI(t, t′) =
V̂I(t)ÛI(t, t

′);

(b) Schrödinger equation: i~∂t |ψI(t)〉 = V̂I(t) |ψI(t)〉;
(c) evolution of the interaction (1): V̂I(t) = Û0(t

′, t)V̂I(t
′)Û0(t, t

′);

(d) evolution of the interaction (2): i~∂tV̂I(t) =
[
V̂I(t), Ĥ0

]
;

6.4. Apply the optical theorem to an initial state of two particles. What is
the formula for the total cross section?

6.5. Consider the Yukawa potential

V (r) = λ
e−mr

r
,

where r is the relative distance between two particles and λ and m are
constants with appropriate units.

(a) What are the units of λ and m? Is there a unit system in which
they can be assigned the same units?

(b) Compute the matrix element entering the cross section in the first
Born approximation;
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(c) Using the previous result, compute the differential cross section of
the process;

(d) Take now the m→ 0 limit to reduce the Yukawa potential to the
Coulomb one and write the resulting differential cross section.

6.6. Consider the situation in which the interaction can be written as

V (x) =
N∑
i=1

Vi(x− xi) ,

which represents the case of multiple scattering centers.

(a) Write the explicit expression for the scattering amplitude;

(b) Define the exchanged momentum at each scattering center as Qi,
Q = max(Qi) and R the typical overall size of the target. What
happens to the scattering amplitude when QR� 1?

(c) What happens instead in the opposite situation, QR � 1? Sup-
pose all the individual scattering amplitudes are equal. The scat-
tering in this situation is called ”coherent scattering”. In the
case of neutrinos scattering off nucleus, the effect was predicted
for the first time in 1974 by D. Freedman (Phys.Rev. D9 (1974)
1389-1392) and experimentally observed by the COHERENT col-
laboration in 2017 (Science 357 (2017) no.6356, 1123-1126 ).

(d) Suppose the scattering centers are nucleons inside a nucleus. Use
the typical nucleus size to estimate the exchanged momentum Q ∼
1/(4R) up to which we can estimate to have coherent scattering
off nuclei.

6.7. As we have seen, strictly speaking the computation of the probability
rate for the process i→ f to happen must be computed using normal-
ized states, i.e. box normalized states, if we are considering continuum
eigenstates. Using the box normalization, write down:

(a) the expression for the quantized radiation field;

(b) the commutator between annihilation and creation operators;

(c) the matrix element for a dipole transition.



Advanced Quantum Mechanics 16

Check explicitly that all the dependence on the size of the cube dis-
appears once we sum over all possible photon momenta in the final
state.

6.8. Compute the matrix element for the process

A∗ +N(k,λ) → A+ (N + 1)(k,λ) ,

where A and A∗ are atomic states and N(k,λ) represents a state with
N photons, all with momentum k and polarization λ. This process is
called “stimulated emission”.


