List of exercises 8

- 1. Consider a particle with *definite linear momentum* \boldsymbol{p} . What result do we obtain measuring the component of the orbital angular momentum along \boldsymbol{p} ?
- 2. Consider an eigenstate of \hat{J}^2 and \hat{J}_3 . Compute the values of $\langle \hat{J}_1 \rangle$ and $\langle \hat{J}_2 \rangle$;
- 3. A measurement of a system in j = 1 along \hat{J}_1 gives $+\hbar$ as result. Compute the probability of getting $-\hbar$ as result of a measurement of \hat{J}_3 ;
- 4. Consider a classical rotator with Hamiltonian

$$H = \frac{1}{2}I\omega^2 \,,$$

where I is the inertia momentum and ω the angular velocity. What are the eigenvalues and eigenvectors?

- 5. Consider a system with angular momentum $\ell = 1$. A measurement of the component of the angular momentum along a direction \boldsymbol{n} such that $\boldsymbol{n} \cdot \boldsymbol{e}_z = \cos \theta$ gives the result $+\hbar$. What is the probability of finding the value $+\hbar$ in a measurement of \hat{L}_3 ?
- 6. Show that the components of the vector $\boldsymbol{x} = (x, y, z)^T$ can be written as combinations of spherical harmonics;
- 7. A particle is in a state with wave function

$$\psi(\boldsymbol{r}) = N \, x \, e^{-\alpha r}$$

where N is a normalization factor. A measurement of \hat{L}^2 is performed. What is the wave function immediately after the measurement?

8. Given the following state of a system

$$\psi(r,\theta,\phi) = Ax(r)(\cos\theta + \sin\theta\cos\phi)$$

with

$$\int_0^\infty |x(r)|^2 r^2 dr = 1,$$

- (a) compute |A| such that ψ is normalized;
- (b) show that $\langle L_+ \rangle = \langle L_- \rangle$;
- (c) compute the time evolution and the possible results of a measurement of L_3 and their probability if

$$H = \frac{L^2}{2I} + \alpha L_3.$$

9. Given the following state of a system

$$\psi(r, \theta, \phi, t = 0) = R(r)(\alpha_0 Y_{1,1}(\theta, \phi) + \beta_0 Y_{1,-1}(\theta, \phi))$$

and

$$H = \frac{|\vec{L}|^2}{2I} + \alpha L_3,$$

- (a) find $\psi(\vec{x}, t)$;
- (b) the values of a measurement of \vec{L}^2 , L_3 and L_1 and their probability;
- (c) for which value of t the probability of having $L_1 = 1$ is the largest?
- (d) if we define the states

$$\psi_{-}(\vec{x}) = \frac{R(r)}{\sqrt{2}}(Y_{1,1} - Y_{1,-1})\psi_{+}(\vec{x}) = \frac{R(r)}{\sqrt{2}}(Y_{1,1} + Y_{1,-1}),$$

and the operator F with the properties $F\psi_{-} = 0$ and $F\psi_{+} = \psi_{-}$, find the expectation value of F at a generic time t, $F(t) = \langle \psi | F | \psi \rangle_{t}$ and compute the limit

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T F(t) dt$$

10. A particle, similar to a quantum spherical rotor, in a magnetic field along y, is described by the hamiltonian

$$H = \frac{\vec{L}^2}{2I} - gBL_2$$

Knowing that at t = 0 the measurement of the orbital angular momentum gives $2\hbar^2$ and the measurement of its component along the z-axis gives zero, determine

- (a) the state $|\psi, t\rangle$ at the generic time t;
- (b) the expectation value on $|\psi, t\rangle$ of H and L_1 ;
- (c) the first time t_0 , if it exist, such that $|\psi, t\rangle$ is an eigenstate of L_1 .
- 11. Consider a spin 1/2 particle with angular momentum 1, with time evolution described by the Hamiltonian

$$H = \alpha \vec{L}^{2} + \beta \vec{S}^{2} + \gamma (L_{3} + 2S_{3}).$$

- (a) Determine the eigenstates relative to the total angular momentum \vec{J}^2 and J_3 , where $\vec{J} = \vec{L} + \vec{S}$;
- (b) Given the state of the system at t = 0

$$|\psi, t = 0\rangle = |3/2, 1/2, 1, 1/2\rangle_{j,j_3,l,s},$$

determine the values of measurements of \vec{J}^2 and J_3 at a generic time t and their probability.

- (c) If at \bar{t} a measurement of \vec{J}^2 gives 3/4 as a result; determine what values can give a measurement of S_3 at a time $t > \bar{t}$ and its probability.
- 12. A spin 1 particle with mass m is constrained to move on the surface of a sphere of radius R and lies in a magnetic field B along the z direction, such that its Hamiltonian is

$$H = \frac{\dot{L}^2}{2mR^2} + \frac{\mu B}{\hbar} (L_3 + 2S_3).$$

At t = 0 a measurement of \vec{J}^2 gives exactly $2\hbar^2$, a measurement of J_3 gives exactly \hbar and one of \vec{L}^2 gives a result $\leq 2\hbar^2$; the probability of having $S_3 = \hbar$ is 2/3 and the expectation value of $\cos \theta$ is the largest possible. Find as a function of time

- (a) the state of the system;
- (b) the expectation value of $\cos \theta$ and \vec{J}^2 .
- 13. Write the matrix representations for L_3 , L_{\pm} and L^2 for $\ell = 0$, 1/2 and 1.

14. A spinor of SU(2) is an object that transforms in the fundamental representation, *i.e*

$$\psi_a \to U_{ab} \psi_b \,, \qquad a, b = 1, 2 \,,$$

where $U \in SU(2)$. In analogy to what is done for n-dimensional vectors, we can define a 2-*tensor* as an object that transforms as the product of two spinors, *i.e.*

$$T_{ab} \to U_{ac} U_{bd} T_{cd}$$
.

(a) Show that, given two spinors ψ and χ , the combination

$$\chi^{\dagger}\psi \equiv \chi_a^*\psi_a$$

is invariant for transformations of SU(2);

(b) Show that the combination

$$\varepsilon_{ab}\psi_a\chi_b$$

is also invariant under transformations of SU(2).