List of exercises 7

- 1. Show that the Hamiltonian is the conserved Noether charge corresponding to time translations using the Lagrangian formalism;
- 2. Consider a particle subject to the potential $V = V_0 \sin(2\pi x/a)$:
 - (a) What are the symmetries of the Hamiltonian H?
 - (b) Is momentum conserved?
- 3. Show that for antiunitary operators we must have $(\alpha \in \mathbb{C})$

$$\hat{U}\left[\alpha \left|\psi\right\rangle\right] = \alpha^{*}\hat{U}\left|\psi\right\rangle$$

- 4. Using the definition of symmetry in terms of probability, show that
 - (a) if \hat{U}_1 and \hat{U}_2 are symmetries then so is $\hat{U} = \hat{U}_1 \hat{U}_2$.
 - (b) if \hat{U} is a symmetry then so is \hat{U}^{-1} .
- 5. Consider the translation operator

$$\hat{U}(\boldsymbol{a}) = e^{-i\boldsymbol{a}\cdot\vec{P}/\hbar}$$

Show that $[\hat{P}_i, \hat{P}_j] = 0$ is equivalent to

$$\hat{U}(\boldsymbol{b})\hat{U}(\boldsymbol{a})=\hat{U}(\boldsymbol{a})\hat{U}(\boldsymbol{b})$$
.

What are the structure constants of the group generated by \vec{P} ?

- 6. Show that a simmetry transformation $\hat{A} \to \hat{U}^{\dagger} \hat{A} \hat{U}$ do not change the eigenvalues of \hat{A} ;
- 7. Write explicitly
 - (a) The generators of rotations in 4 dimensions;
 - (b) The quantum generators of rotations in 4 dimensions (in the basis in which \hat{J}_3 is diagonal).

8. Compute

$$\left\langle oldsymbol{x} \left| \, e^{-ioldsymbol{a}\cdotec{P}/\hbar} \, \right| \psi
ight
angle$$

for a generic state.

9. We have seen that the unitary operator that implements parity in Quantum Mechanics can be chosen to have a phase such that

$$\hat{\Pi} \ket{oldsymbol{x}} = \ket{-oldsymbol{x}}$$
 .

Show that, imposing well motivated conditions on the wave function $\langle \boldsymbol{x} | \boldsymbol{p} \rangle$, the same choice of phase implies that

$$\hat{\Pi} \ket{oldsymbol{p}} = \ket{-oldsymbol{p}}$$
 .

10. Consider a particle subject to the 1-dimensional potential

$$V(x) = \begin{cases} 0 & |x| < a; \\ \infty & \text{otherwise.} \end{cases}$$

- (a) Show that the eigenfunctions must be either even or odd functions;
- (b) Using the results of the previous item, solve the time-independent Schödinger equation and determine univocally eigenvalues and eigenfunctions.