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1 Exercises on the Path Integral

1. Using the propagator for the quantum free particle

K(b|a) =

(
m

2πi~(tb − ta)

)1/2

e
im(xb−xa)2

2~(tb−ta) ,

show that (
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+
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∂2

∂x2b

)
K(b|a) = 0 ,

which means that the propagator obeys the same Schödinger equation
as the wave function.

2. Various techniques can be used to explicitly compute the path integral,
in addition to the one saw during the lectures. Here is another one:

(a) Given an action S[x(t), tb, ta] =
∫ tb
ta
dt L[ẋ(t), x(t)], the classical

path xcl(t) is an extremum of the action S. Compute the differen-
tial equation that xcl(t) must obey (i.e. the equation of motion);

(b) Each path can now be written as

x(t) = xcl(t) + y(t) ,

i.e. we can parametrize any path measuring its “distance” from
the classical path. Do you expect the path integral measure to
obey Dx(t) = Dy(t)? What are the boundary conditions that
y(t) must obey at t = ta,b?

(c) Consider now a generic quadratic Lagrangian

L = a(t)ẋ2 + b(t)ẋx+ c(t)x2 + d(t)ẋ+ e(t)x+ f(t) .

What is the equation of motion that the classical path must obey?

(d) Compute

S[xcl(t) + y(t)]

and show explicitly that, using the equation of motion for xcl(t),
the term linear in y(t) vanishes;
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(e) Show that the above computations lead to a kernel written in the
form

K(b|a) = eiS[xcl(t),tb,ta]/~
∫ 0

0

Dy(t)e
i
~
∫ tb
ta
dt (a(t)ẏ2+b(t)ẏy+c(t)y2)

= eiS[xcl(t),tb,ta]/~F (tb, ta) ,

which means that for quadratic Lagrangians all the spatial depen-
dence is given by the classical path;

(f) Confirm the previous point computing the classical path and S[xcl(t)]
for the free particle;

(g) What about the time-dependent factor F (tb, ta)? Its computation
is clearly the difficult part, since it encodes all the proper quantum
effects that cannot be inferred from the classical path. It can be
shown that, for the case of physical interest a(t) = m/2, it is given
by

F (tb, ta) =

(
m

2πi~f(tb, ta)

)1/2

,

where the function f must obey

m
∂2f(t, ta)

∂t2
− 2c(t)f(t, ta) = 0 , f(ta, ta) = 0 ,

∂f

∂t

∣∣∣∣
t=ta

= 1 .

(See L.S. Schulman, Techniques and applications of path integra-
tion, Chapter 6, for more details.)

(h) Check the above result using the free particle case.

3. The Legendre polynomials are orthogonal functions on the interval
(−1, 1) that can be constructed applying the Gram-Schmidt procedure
to the set {xα}α=0,1,2,.... Construct explicitly the first three normalized
Legendre polynomials.

4. Repeat the procedure of exercise 3 in the case of the Hermite polyno-
mials, which are orthonormal functions on (−∞,+∞) constructed out
of {e−xxα}α=0,1,2,...
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2 More exercises on perturbation theory

1. In non degenerate time-independent perturbation theory, what is the
probability of finding in a perturbed energy eigenstate |Ei〉 the corres-

ponding unperturbed eigenstate |E(0)
i 〉? Solve this up to the second

order.

2. A system with three unperturbed states can be represented by the
perturbed Hamiltonian matrix

H =

 E1 0 a
0 E1 b
a b E2

 ,

where E2 > E1. The quantities a and b are real numbers, and are
perturbations of the same order and much smaller than E2−E1. Find
the exact eigenvalues. Use the second order degenerate perturbation
theory to find the eigenvalues. Compare the results.

3. Find eigenvalues and eigenvectors in degenerate perturbation theory
for the Hamiltonian

H =

 0
√

2V0 2
√

2V0√
2V0 E0 2V0

2
√

2V0 2V0 E0

 ,

defined in the basis |1〉, |2〉 and |3〉.


