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1 Exercises

1. In the Heisenberg picture, show that the time-dependent observable
A(t) = U(t, t0)

†AU(t, t0) satisfies the differential equation i~∂tA(t) =
[A(t),H];

2. Show explicitly that the basis vector of some hermitian observable in
the Heisenberg picture depend on time;

3. Suppose a system is described by two observables

A =

(
0 1
1 0

)
, B =

(
0 −i
i 0

)
. (1)

(a) What are the possible outcome values for a measurement of A and
B?

(b) Are these compatible observables? Write the appropriate Heisen-
berg inequality.

4. Show that if ∆ϕA = 0 then |ϕ〉 is an eigenvector of the observable A.

5. Show explicitly that d
dt
〈ψ(t) |ψ(t)〉 = 0 requires a self-adjoint Hamil-

tonian.

6. Can the vectors |χ〉 = (a, b) and |ϕ〉 = (|a|, |b|eiγ) describe the same
state? In which cases (if any) this is true?

7. Suppose we lived in a universe in which the Schrödinger equation con-
tains second order time derivatives, i~∂2t |ϕ(t)〉 = H |ϕ(t)〉. Would it be
true that the norm of |ϕ(t)〉 is time independent?

8. A stationary spin 1/2 particle of magnetic moment µ in a magnetic
field B can be described quantum mechanically as a two-level system
by using the magnetic moment as the operator

µ = µσ. (2)
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where the σ matrices (Pauli matrices) are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3)

We can then construct the Hamiltonian for this system by analogy with
the classical system,

H = −µ ·B. (4)

Compute the time evolution operator U(t) in the basis induced by the
Pauli matrices.

9. Consider the most general two-level time-dependent Hamiltonian

H(t) =

(
a(t) b(t)
b∗(t) c(t)

)
, (5)

where a(t) and c(t) are real-valued functions.

(a) Find conditions on the three functions such that the Hamiltonian
commutes with itself for all times, i.e.

[H(t),H(t′)] = 0, ∀t, t′ (6)

(b) Use these conditions to write b(t) in terms of a(t), c(t) and a single,
constant complex number z.

(c) Compute the time evolution operator for this simplified Hamilto-
nian. (Hint: write it in terms of Pauli Matrices and follow the
strategy of the last problem)

2 Problems

10. We have seen that the Hamiltonian for the ammonia molecule in the
{|1〉 , |2〉} basis is

H =

(
E0 −A
−A E0

)
, (7)

which has eigenvectors {|E0 − A〉 , |E0 + A〉}.
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(a) Check explicitly that {|E0 − A〉 , |E0 + A〉} is an orthonormal ba-
sis in C2;

(b) Compute the matrix of the change of basis between {|1〉 , |2〉} and
{|E0 − A〉 , |E0 + A〉}. Is it unitary as expected?

(c) Since the matrix of the change of basis between {|1〉 , |2〉} and
{|E0 − A〉 , |E0 + A〉} is real, parametrize it as a rotation matrix,
properly defining the rotation angle;

(d) Write the Hamiltonian operator in the {|E0 − A〉 , |E0 + A〉} basis;

(e) Compute the time evolution operator in the {|E0 − A〉 , |E0 + A〉}
basis.

(f) Suppose we prepare the ammonia molecule in the ground state
|E0 − A〉 at t0 = 0. Compute the probability to find the system
in the excited state after a time t.

(g) If we were to put the molecule in a small constant electric field
E pointing from site |1〉 to |2〉 we expect the Hamiltonian to be
mostly unchanged, except for a small shift in energy qEd, where q
is an effective charge and d is the distance between the electronic
sites. If we start with the molecule on site |1〉 at t0 = 0, compute
the probability for it to be measured in site |2〉 for t > t0.

11. In 1947, C. Butler and G. Rochester discovered the first particle contai-
ning the strange quark, dubbed neutral K meson. In terms of quark,
there are two possibilities for the constituent quarks: we either have a
bound state composed by a strange and an anti-down quark sd̄ (deno-
ted by K0), or another bound state composed by an anti-strange and a
down quark s̄d (denoted by K0). The Standard Model of particle phy-
sics predicts that there is a non-vanishing probability for K0 to turn
into K0 and viceversa. Does the system undergo oscillation? Motivate
the answer.

12. The sun can be considered a “neutrino factory”, since a huge neutrino
flux of 6.5 × 1014 ν/s reaches Earth. The main nuclear reaction for νe
production is p+ +p+ → 2H+ +e+ +νe, where νi indicates a neutrino of
flavor i. Since the physics of the interior of the Sun is very well known
since the 1960’s (it is actually much better known than the physics of
the interior of the Earth), it is possible to predict the solar neutrino
flux on Earth.
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In 1964 the Homestack experiment was developed to measure the elec-
tron neutrino flux on Earth, measuring about 1/3 of the expected num-
ber of νe. The result persisted since 2001, when the SNO experiment
measured both the νe and the total νe + νµ + ντ flux, confirming the
Homestack result and observing that the total number of neutrinos rea-
ching Earth matched the νe flux produced in the sun. This phenomenon
is called neutrino oscillation, and has been experimentally confirmed
with other neutrino sources (atmospheric and reactor).

The explanation for the oscillation is quantum mechanical, in analogy
to the oscillation of the ammonia molecule. Although the neutrino sys-
tem is a three level system (νe + νµ + ντ ), we can in first approximation
consider it as a two level system involving νe and νµ only. Suppose we
have some mystery neutrino moving in a certain direction with very
high momentum p.

(a) Choose appropriately the {|νe〉 , |νµ〉} basis. Explain what these
states represent.

(b) What must be the form of the Hamiltonian in the {|νe〉 , |νµ〉} basis
for the flavor to have oscillations?

(c) Compute the states of definite mass using the ultrarelativistic ap-
proximation,

Ei =
√

(pc)2 + (mic2)2 ≈ pc+
m2
i c

3

2p
. (8)

Write the original Hamiltonian in the flavor basis in terms of the
two definite masses m+ > m−.

(d) Consider now that an electron neutrino is created in the sun at
t0 = 0. What is the time evolution of the state in the flavor basis?

(e) What is the probability of measuring a νe neutrino at the time t?
Write it in terms of the ultrarelativistic energy E = pc. This is
called the survival probability.

(f) Suppose that the Sun emits a fixed flux Φ of electron neutrinos
per unit time. Given that the Earth is very far away from the Sun,
show that our measured flux of electron neutrinos is only Φ/2.

13. In this problem we are going to study how the motion of a free quantum
particle in one spatial dimension arises from finite dimensional QM,
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using some intuitive reasoning based on classical mechanics. Inspired
by the benzene molecule, consider a closed chain of N identical atoms
with a single energy level ε. We put an electron in that chain that can
hop to the nearest neighbors, through the Hamiltonian

H =
N∑
j=1

ε |j〉 〈j| − γ (|j〉 〈j + 1|+ |j〉 〈j − 1|) (9)

where orthogonal basis of kets {|j〉} indicate that the electron is mostly
localized around atom j. Since the chain is supposed to be closed,
we also identify |j〉 ≡ |N + j〉. The choice of sign for the hopping
parameter γ will become clear later.

(a) Show that H is self-adjoint.

To see how this Hamiltonian can describe the motion of the electron,
define a position operator

X =
N∑
j=1

xj |j〉 〈j| (10)

where xj corresponds to the position of atom j along the chain. We
then take, for all j, xj − xj−1 = a, the separation between sites.

We now define a velocity operator V in the following way. For any time
evolved state, we must have

〈V〉 =
d 〈X〉
dt

. (11)

(b) Write down an expression for V in terms of H and X. Then write
down V explicitly.

(c) Show that [H,V] = 0.
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This last property guarantees that velocity eigenstates are energy ei-
genstates, and so we can analyze the former more thoroughly in order
to solve the system.

(d) Show that

|φ〉k =
1√
N

N∑
j=1

eikj |j〉 (12)

is a velocity eigenstate. What are the allowed values for k? Show
that if N is very large (obcenely large, really), there’s a large
amount of states whose eigenvalues v are related to k by

k ≈ ~v
2γa

. (13)

(e) What is the eigenvalue of H is associated to |φk〉? Suppose we
want to describe the dynamics of a particle of mass m. In the
very large N approximation, what choices of ε and γ give rise to
the kinetic energy of classical mechanics? Namely,

E =
1

2
mv2. (14)

(f) Using those choices of ε and γ, define the momentum operator

P = mV. (15)

Show that

[X,P] = i~
N∑
j=1

|j〉 〈j + 1|+ |j〉 〈j − 1|
2

(16)

Note how this is very similar to the canonical commutation relation,
[X,P] = i~, just that the terms are completely off-diagonal. Since,
however, we’re eventually going to take a very largeN approximation, it
makes sense that we would not be able to distinguish between positions
so close together such as j and j + 1. Approximating these neighbors
to be very similar, we get the canonical commutation relation.

[X,P] = i~ (17)


