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List of exercises 10

1. The wave function of a particle subject to a spherically symmetrical
potential V(r) is given by

ψ(~x) = (x+ y + 3z)f(r).

(a) Is ψ an eigenfunction of L̂2? If so, what is the `-value? If not, what
are the possible values of ` we may obtain when L̂2 is measured?

(b) What are the probabilities for the particle to be found in various
`z states?

(c) Suppose it is known somehow that ψ(~x) is an energy eigenfunction
with eigenvalues E. Indicate how we may find V (r).

2. Wigner-Eckart 1: consider a spin-less particle bound to a fixed center
by a central force potential.

(a) Relate, as much as possible, the matrix elements

〈n′, `′,m′| ∓ 1√
2

(x± iy)|n, `,m〉 〈n′, `′,m′|z|n, `,m〉

using only the Wigner-Eckart theorem. Discuss under what con-
ditions the matrix elements are non-vanishing.

(b) Do the same using the wave functions ψ(~x) = Rn`(r)Y
m
` (θ, φ).

3. Wigner-Eckart 2:

(a) Write xy, xz and (x2−y2) in terms of a components of a spherical
(irreducible) tensor of rank 2.

(b) The expectation value

Q ≡ e〈α, j,m = j|(3z2 − r2)|α, j,m = j〉

is know as the quadrupole moment. Evaluate

e〈α, j,m = j|(x2 − y2)|α, j,m = j〉,

where m′ = j, j−1, j−2, ... in terms of Q and appropriate Clebsch-
Gordan coefficients.
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4. Wigner-Eckart 3: Let us label as |n, `,m〉 the eigenstates of the
hydrogen atom. Let χ be

χ = 〈n = 3, ` = 2,m = 2|xy|n = 3, ` = 0,m = 0〉.

Compute as a function of χ,

χ = 〈n = 3, ` = 2,m|Oj|n = 3, ` = 0,m′ = 0〉,

where Oj = xy, xz, yz, xx, yy, zz.

5. Wigner-Eckart 4: Let |j = 3/2, jz〉 label the simultaneous eigenvec-
tors of the angular momentum operators J2 and Jz. Evaluate

〈j = 3/2, j′z|Jm|j = 3/2, jz〉, m = x, y, z

and show that the results are in agreement with the Wigner Eckart
theorem.

6. Fine structure of hydrogen:

(a) The kinetic energy of a particle of rest mass m and momentum p
according to special relativity is

K =
√
p2c2 +m2c4 −m.

Compute its non relativistic limit (p � mc) and compare the
result with the standard non relativistic expression for the kinetic
energy.

(b) Compute the effect of this type of correction on the energy levels
of a hydrogen atom. Does the new term commute with L̂2 and
L̂z? Use the correct (degenerate or non-degenerate) first order
perturbation theory.

(c) The electron in a hydrogen atom experiences an electric field
~E = er̂

4πε0r3
due to the charge of the nucleus. Furthermore, a non-

relativistic particle moving in an electric field with velocity ~v expe-

rience an effective magnetic field ~B = −~v× ~E
c2

. Built the additional
contribution to the Hamiltonian due to this effect. (Hint: remem-
ber that an electron posses a magnetic moment µ = −e/meŜ).
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(d) Apply perturbation theory to the hydrogen atom using the new
perturbed Hamiltonian and compare with the result of point (b).
Are the two results of the same order? Can you add these correc-
tions together?

(e) Draw the effect(s) find in the previous points on the n = 1, 2 and
3 energy states of a hydrogen atom.

7. Hyperfine structure of hydrogen: the proton inside the hydrogen
atom posses a magnetic moment

µp =
gpe

2mp

Ŝp,

where Sp is the proton spine and gp = 5.59 is the proton gyromagnetic
ratio. The proton’s magnetic moment generates the following magnetic
field

~B =
µ0

4πr3
[3(~µp · ~er)~er − ~µp)] +

2µ0

3
~µpδ

3(~r),

where ~er = ~r/r. The Hamiltonian of the electron in the magnetic field

generated by the proton is H1 = −~µe · ~B with ~µe = −e/me
~Se.

(a) TreatingH1 as a perturbation, find the corrections to the hydrogen
atom eigenvalues induced by this new term for a generic state.

(b) What is the energy shift for the ground state?

(c) Using the fact that ~S = ~Se + ~Sp show that the spin-spin coupling
break the degeneracy of the two 1S1/2 states of hydrogen. This
lifting is know as hyperfine structure.

(d) Is the hyperfine energy shift larger or smaller than the fine struc-
ture energy shift? By how much?


