List of exercises 1

1. Consider the matrix

$$\mathbb{A} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
.

Compute \mathbb{A}^{\dagger} , tr(\mathbb{A}) and det(\mathbb{A}). Is this matrix hermitian? Is it unitary?

- 2. Verify that the operator $P_{\varphi} = |\varphi\rangle \langle \varphi| / ||\varphi||^2$ satisfies all the properties of projectors.
- 3. Prove that the trace and the determinant of an operator are independent from the choice of basis.
- 4. Consider the two vectors $|a_1\rangle = (1,1)$ and $|a_2\rangle = (2,1)$:
 - (a) Show that the two vectors are linearly independent;
 - (b) Apply the Gram-Schmidt orthonormalization procedure to construct an orthonormal basis starting from $\{|a_1\rangle, |a_2\rangle\};$
 - (c) Compute the basis that connects the just found orthonormal basis with the canonical basis $\{|e_1\rangle = (1,0), |e_2\rangle = (0,1)\}$ and check its unitarity;
 - (d) Verify that the basis constructed satisfies the resolution of the identity;
 - (e) Is it true that the set of vectors $\{|a_1\rangle, |a_2\rangle\}$ themselves satisfies the resolution of the identity?
- 5. Prove that for an operator \mathbb{A} with eigenvalues $\{a_1, \ldots, a_n\}$ we have $\operatorname{tr} \mathbb{A} = \sum_k a_k$ and $\operatorname{det} \mathbb{A} = \prod_k a_k$;
- 6. Given the matrix

$$\mathbb{T} = \begin{pmatrix} 2 & i & 1\\ -i & 2 & i\\ 1 & -i & 2 \end{pmatrix};$$

- a) compute the eigenvalues $\lambda_{1,2,3}$;
- **b)** compute $tr(\mathbb{T})$ and $det(\mathbb{T})$;
- c) show explicitly that $tr(\mathbb{T}) = \lambda_1 + \lambda_2 + \lambda_3$ and $det(\mathbb{T}) = \lambda_1 \lambda_2 \lambda_3$;

- d) compute the eigenvectors;
- e) write, if possible, the spectral decomposition of \mathbb{T} ;
- f) compute $e^{\mathbb{T}}$;
- 7. The Pauli matrices are defined as

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- **a)** Show that $\sigma_i^{\dagger} = \sigma_i, i = 1, 2, 3;$
- **b)** Show that $\sigma_i \sigma_j = \delta_{ij} + \epsilon_{ijk} \sigma_k$;
- c) Deduce that $(\vec{a}^T \cdot \vec{\sigma})(\vec{b}^T \cdot \vec{\sigma}) = (\vec{a}^T \cdot \vec{b}) + i(\vec{a} \times \vec{b}) \cdot \vec{\sigma}$, where $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)^T$;
- d) Compute eigenvalues and eigenvectors of each matrix σ_i ;
- e) Compute $e^{i\vec{a}\cdot\vec{\sigma}}$.
- 8. Let M be a matrix in \mathbb{C}^2 .
 - **a)** Is it true that $M = c1 + \vec{a}^T \cdot \vec{\sigma}$ with $(a_i, c) \in \mathbb{C}$?
 - **b)** Using the properties of the $\vec{\sigma}$ matrizes, compute the coefficients $c \in \vec{a}$;
 - c) With which product the basis $\{1, \vec{\sigma}\}$ is orthogonal?
 - d) Compute e^M ;
 - e) Decompose M^{-1} in the $\{1, \vec{\sigma}\}$ basis.
- 9. Following the structure of the Pauli matrices, write all the 3 × 3 hermitian matrices with vanishing trace. These 8 matrices are called Gell-Mann matrices λ_a , a = 1, ..., 8. Is it true that the set $\{1, \lambda_{1,...,8}\}$ is a basis for the matrix space \mathbb{C}^3 ?